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Abstract-This paper examines the influence of a finite heated length on the heat transfer characteristics 
of laminar flows through thick-walled circular tubes. Under the assumption of temperature-invariant 
properties, this kind of conjugate problem is governed by four dimensionless groups: the length of the 
heated region, the Peclet number, the solid-fluid thermal conductivity ratio, and the radii ratio of the solid 
wall. From numerical solutions via the control volume approach, it was found that the two-dimensional 
wall offers a heat flow path into the fluid flow controlling the parameters of interest such as, the bulk 
temperature of fluid and both internal and external surface temperatures of the solid wall. From a set of 
typical cases analysed, it was concluded that both surface temperatures exhibited a substantial variation 
in the axial direction and lesser and more gradual variations were exhibited for the distribution of 
bulk temperature. A radical limiting solution based on a one-dimensional domain approximation of the 

conduction equation for the wall is also explained in detail. 

INTRODUCTION 

HEAT TRANSFER by forced convection in internal lami- 
nar flows has been analysed extensively for a wide 
variety of thermal boundary conditions. A com- 
pendium of analytical and numerical solutions for the 
thermal entrance region of ducts has been docu- 
mented in the monograph by Shah and London [ 11. 
From an analysis of the information contained there, 
it is apparent that the thermal boundary conditions 
of uniform axial and peripheral wall temperature and 
uniform axial and peripheral heat rate are realized in 
many practical applications. For thin-walled pipes, 
these two conditions are equally valid for the external 
surface as well as for the internal surface, in other 
words the solid-fluid interface. However, for rela- 
tively thick-walled pipes, the boundary conditions 
imposed at the external surface, in general, are differ- 
ent from their counterparts at the internal surface. 
From physical reasoning, these deviations arise 
because the wall plays a significant role distributing 
the heat coming from the external surface to the fluid 
flow itself. Under these extreme circumstances, the 
thermal boundary conditions at the solid-fluid inter- 
face are no longer known a priori. Such interactive 
situations have been referred to by Luikov et al. [2] 
as conjugate problems in the heat transfer literature. 
Correspondingly, this kind of problem needs to be 
reformulated within the generalized framework of the 
entire solid-fluid system, wherein the temperature and 
heat flow at the solid-fluid interface are controlled 
by the conductive-convective interaction taking place 
there. This generalized approach considers rigorously 
the simultaneous effect of axial and transversal heat 

conduction in the tube wall of finite length. Accord- 
ingly, a combined solution incorporating both fluid 
and solid media has to be obtained. In view of the 
foregoing, Mori et al. [3] were the first investigators 
who examined the above-mentioned conjugate prob- 
lem for a circular tube considering two thermal 
boundary conditions specified at the outer surface, 
i.e. uniform temperature and uniform heat flux. They 
assumed the temperature distribution at the wall-fluid 
interface in a power series form having unknown 
coefficients. Correspondingly, the solution of the 
energy equation for the fluid was obtained directly by 
superposing the classical Graetz solution using the 
temperature distribution at the interface boundary 
condition. Similarly, for the particular case of uniform 
heat flux applied at the external surface, the authors 
used the Graetz series outlined by Siegel et al. [4], 
wherein the first seven eigenvalues were computed. In 
view of this, the main advantage of the procedure 
employed in ref. [4] is that only one term needs to 
be evaluated in the region where the temperature is 
considered as fully developed. On the contrary, its 
unattractive feature is that the number of terms 
required in the series for good accuracy increases dras- 
tically close to the entrance of the heat exchange 
region. 

Conversely, the solution to the conduction equation 
for the wall domain was derived readily. Therefore, 
equating both distributions of temperature and heat 
flux across the solid and fluid media, Mori et al. [3] 
completed the combined solution for the conjugate 
problem, once the unknown coefficients of the power 
series were evaluated. 

At this stage, it should be pointed out that the 
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NOMENCLATURE 

parameter, equation (1 a) 
local convective coefficient [w rn-’ “C- ‘1 
thermal conductivity of fluid [w m-’ ‘C-‘1 
thermal conductivity of wall [wm-’ “C-‘I 
parameter, equation (la) 

k,/kf 
length of heated region [m] 
dimensionless value of L, L/r, Pe 
local Nusselt number, 2hr,/kf 
Peclet number, 2tir,/cr, 
convective heat flux at the internal surface 

Wm 3 
applied wall heat flux at the external 
surface [w mm’] 
radial coordinate [m] 
internal radius of wall [m] 
external radius of wall [m] 
dimensionless coordinate, r/r, 

r,lri 

wall thickness, re - ri [m] 
temperature [“Cl 
velocity of fluid [m s ‘1 

u mean velocity of fluid [m s ‘1 
u* u/u 
x axial coordinate [m] 
x* dimensionless coordinate, x/r, Pe. 

Greek symbols 

ai- thermal diffusivity of fluid [m’s_ ‘1 

B wall conductance parameter. 
equation (11) 

$I dimensionless temperature. 

UT- To)/qwre 
qW mean temperature of the wall, 

equation (10) 
Q dimensionless heat transfer rate, 

equation (9). 

Subscripts 
b bulk 
e external surface 
i internal surface 
W wall 
0 inlet. 

analytical solution developed in ref. [3] may present 
some inaccuracies in the vicinity of the origin of the 
heat exchange section, and also for the entire section 
when its length becomes very small. This anomalous 
behaviour may be attributed to the fact that the ana- 
lytical solution relies on the use of only seven eigen- 
values as reported in ref. [4]. On the other hand, it 
should be added that, Luikov et al. [2] delineated 
a mathematical procedure for the above-mentioned 
conjugate problem, but their closed-form solution 
involved highly complicated functions and because of 
this, no numerical results were reported. 

Additionally, Barozzi and Pagliarini [5] re-exam- 
ined the wall conduction effect of the problem treated 
in ref. [3] using a numerical procedure that combines 
the finite-element method in the solid wall and the 
Duhamel theorem at the fluid-solid interface. They 
used the heat transfer coefficient as the vehicle for 
transmitting information through the interface during 
the required iteration process. 

The main objective of the present study is to provide 
an alternate finite-difference procedure for the prob- 
lem of laminar forced convection through thick- 
walled tubes exposed to a uniform heat flux in a finite 
length. The numerical solution relies on the control 
volume approach devised by Patankar [6]. A sche- 
matic diagram of the physical situation and the appro- 
priate coordinate system is shown in Fig. 1. A search 
of the open literature failed to disclose any prior work 
on the solution method outlined in the preceding para- 
graphs to the problem under study here, except 
the publications of Mori et al. [3] and Barozzi and 

Pagliarini [5]. In this study, the numerical pro- 
cedure was based on an iterative scheme which dealt 
simultaneously with the fluid and the wall domains. 
The computed results depend on four controlling 
parameters: the Peclet number, the fluid-solid con- 
ductivity ratio, the wall thickness and the finite length 
of the heated region. In presenting these results, 
account was taken of the important fact that the only 
relevant quantities of interest for practical problems 
are the local bulk temperature of the fluid and the 
local internal and external surface temperatures of the 
wall, all unknown functions of the axial coordinate. 
Consequently, numerical results are presented for 
each of these quantities, expressed in suitable dimen- 
sionless forms. In addition to this, some local Nusselt 
numbers are computed also for selected cases and they 
are presented for purposes of comparison only. 

The computational procedure employed in this 
paper is being extended to other more complex situ- 

qw 

FIG. 1. Sketch of the problem 
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ations involving combined mechanisms of heat trans- 
fer that do not admit closed-form solutions. 

There is, of course, related work which forms some 
background for the wall conduction effects that were 
investigated here [7-IO]. However, they differ from 
the main lines of the present research. 

STATEMENT OF THE PROBLEM 

In this paper, the physical model under con- 
sideration consists of a constant property fluid flowing 
laminarly through a circular tube as shown in Fig. 1, 
At the entrance of the finite heat exchange region, the 
velocity is assumed fully developed, while the tem- 
perature is taken as uniform. The heating takes the 
form of a uniform axial and peripheral heat flux 
imposed at the outside surface of the tube. As noted 
earlier, consideration is being given here to relatively 
thick walls so that temperature variations along the 
wall and across its thickness are important. Hence, in 
view of this, the influence of the wall thickness of the 
tube in the thermal development region involves the 
application of a two-dimensional energy equation for 
both the fluid and solid regions. These governing 
equations are expressed in compact form as follows : 

u* 84 1 a --_=-- 
2 ax* r* ar* ( ) 

r&Y? +aK% 
ar* pe2 ax*2 (la) 

where, for the fluid domain (0 < r* < 1) 

II* = 2(1 -r*‘) 

K=l 

a=0 

and, for the solid domain (1 < r* < r$) 

(lb) 

u* = 0 

K = KS, 

a= 1. (lc) 

The relevant boundary conditions associated with 
this highly coupled conjugate heat transfer problem 
are 

ti = 0, x*=0 O<r*<l 9 (24 

84 -_=O 
ax* ’ 

x* = 0, 1 < r* < r* e (2b) 

adJ 0 p= ’ r* = 0 3 0 < x* c L* cw 

a+ 
r,*K,,p = 1, r* = r,*, 0 < x* < L* (24 

a4 0 -= I 
8X* 

1 < r* < r* x* = L*. CT (24 

In the preceding equations, the dimensionless vari- 
ables are defined by 

+=, r, r* = !I 
w-d6 , 

x* = x 
ri Pe’ 

L* ==A 

while the remaining symbols are described in the 
Nomenclature. 

Solution of the set of equations (l)-(3) by numeri- 
cal techniques provides the two-dimensional tem- 
perature fields for the fluid and the solid under the 
influence of a uniform wall heat flux applied at a finite 
length. This detailed information was processed and 
eventually employed to evaluate various thermal 
quantities of interest for inclusion in the presentation 
of results. One of these quantities is the local mean 
bulk temperature of the fluid, which in dimensionless 
form, can be expressed as 

I 

L 
4JbW = 2 t&W dr*. (4) 

0 

It should be noted that calculation of this global quan- 
tity is mandatory because the linear bulk temperature 
rise which is characteristic of uniform heated flows 
confined by inactive walls does not prevail here. 

In addition to the mean bulk temperature, other 
quantities of interest are the variations of the internal 
and external surface temperatures 4ti and 4, with 
x*. Numerical evaluation of these quantities will be 
reported later and are obtained directly from the tem- 
perature fields. 

On the other hand, the local Nusselt number dis- 
tribution may be evaluated from its conventional 
definition 

- 2q$ 

N” = &(X*) - &j(x*) 

where q$ designates the dimensionless heat flux across 
the internal surface of the tube given by 

* a4 
4wi = - ar* ,I= ,(-)’ (6) 

In this equation, the superscript (-) means that the 
derivative has been numerically evaluated at the fluid 
side of the solid-fluid interface. 

Conversely, at this stage, it should be emphasized 
that calculation of the local Nusselt number has been 
performed with the sole purpose of validating the 
methodology and comparing our results against 
others published in the literature. Nevertheless, the 
total heat transferred to the fluid flow may be easily 
determined from an energy balance between the sta- 
tions x = 0 and L. This energy balance serves to relate 
the dimensionless bulk temperature & to a so-called 
heat transfer efficiency, defined as 

0 = QTfluid/Qmput (7) 

In this equation, Qinput denotes the amount of heat 



2254 A. CAMPO and C. SCHULEH 

FE. 2. Computational domains 

transfer applied at 
wall. In light of the 

the external surface of the tube 
foregoing 

e rRwd = ~~Cpu-h(~) - T”1. (84 

Upon introducing the dimensionless temperature 4, 

equation (8a) becomes 

Q-r A<,,* = PQW 
* “Z4h. 

(8b) 

Therefore, combining equations (7) and (8b), and 
rearranging terms, yields the simple relation 

The reader should note that equation (9) allows for a 
direct calculation of the total heat transfer rate to the 
fluid once the mean bulk temperature is known at 
x = L. It should be added that the conventional way 
to compute the heat transferred to the fluid, via the 
local Nusselt number, is much more elaborate requir- 
ing knowledge of the distributions of q&, I#+, and &,,, 

respectively (see equation (5)). In addition to this, the 
proposed approach involving equation (9) saves some 
space because the collection of curves for Nu is not 
necessary. 

SOLUTION PROCEDURE 

Solutions of the problem defined by the foregoing 
system of equations were obtained numerically using a 
finite-difference methodology. The difference scheme 
employed here for solving the energy equations for 
both the fluid and the solid regions is an adaptation of 
the control-volume approach developed by Patankar 
[6]. Firstly, in the fluid region, the difference equations 
were written under the assumption of a high Peclet 
number flow, wherein the axial conduction term was 
omitted and the convection term was evaluated on an 
upwind basis. To handle the abrupt change in thermal 
conductivity at the internal interface, a special for- 
mulation proposed by Patankar [6] is utilized. This 
particular formulation is based on the steady, no- 
source, one-dimensional situation in which the ther- 
mal conductivity varies in a stepwise fashion. To cope 
with enhanced accuracy, refinement of the mesh is 
mandatory and the grid points were positioned non- 
uniformly in both the fluid and the solid domains. 
Accordingly, in the radial direction, the grid point 
density was highest in the neighbourhood of the inter- 
face, whereas in the axial direction the highest con- 

fluid 

centration of grid points was placed in the vicinity 
of x* = 0 and L*, respectively, as shown in detail 
in Fig. 2. Moreover, the grid deployment in the 
radial direction was plotted according to a suitable 
stretching transformation from a family of general 
stretching transformations proposed by Roberts [l 11. 

On the other hand, it should be added that the 
salient feature of the numerical methodology em- 
ployed in this study is that the resulting penta- 

diagonal system of algebraic equations was solved 
by implementing the MS1 algorithm developed by 
Schneider and Zedan [12]. Among the advantages 
provided by this powerful algorithm, it can be said 
that it is between two and four times faster than the 
traditional algorithms commonly used for this kind 
of system in the literature. 

Changing the attention to the grid employed in this 
paper, a total of 900 grid points were used in the fluid- 
solid domain. A total of 20 and 10 grid points were 

deployed in the fluid and the solid regions, respec- 
tively, at each of 30 axial stations. Furthermore, com- 
parisons were made with the solution using 10 points 
in the fluid and 5 points in the solid showing that 
convergence was met within plotting accuracy. 

Accuracy tests of the computational scheme pro- 
posed here were made by comparison with the limiting 
condition of uniform heat flux with a non-par- 
ticipating wall, reported by Shah and London [l], In 
addition to this, comparison was also made with the 
analytical solution presented by Mori et al. [3] for the 
problem described above, but with a two-dimensional 
participating wall. The latter authors based their solu- 
tion on seven eigenvalues reported in ref. [4]. In 
general, agreement was very good for both situations 
having passive and active walls. 

ONE-DIMENSIONAL MODEL 

Attention will now be focused on the energy equa- 
tion for the tube wall. As noted earlier, consideration 
is being given in this study to finite thick walls so 
that temperature variations along and across the wall 
cannot be neglected. 

Let us consider the idealization that only one nodal 
point is deployed in the wall region, so that the present 
methodology reduces to the widely known one-dimen- 
sional approximation. This formulation assumes that 
temperature changes across the thickness of the wall 
are relatively small, and accordingly the wall mean 
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@ Slope obtained from the temperature @dent 
in the fluid 

@ Slope obtoimd from the value of qw 

FIG. 3. Sketch for the coupling between the temperature 
distributions. 

temperature ~st~bution \iu, is governed by the dimen- 
sionless ordinary differential equation 

where q$ is the dimensionless heat flux ~st~bution at 
the internal surface. The energy balance that leads to 
equation (10) incorporates some differences between 
the analysis developed by Faghri and Sparrow [A and 
the present analysis. They will be explained in detail 
in the following paragraphs. 

First, the wall conductance parameter /3 accounts 
for the magnitude of the wall curvature, which is 
normally omitted in the conventional one-dimen- 
sional model. In view of this, B, when written 
explicitly, has the form 

(11) 

where t = r,- ri is the wall thickness. The term in 
parentheses on the right-hand side of equation (11) 
gives full account of the effect of the tube curvature. 
This quantity becomes negligible whenever the analy- 
sis is restricted to thin walls (small t) and/or large 
diameter tubes (large Ti). 

Second, the coupling between the t~~mture fields 
of the fluid and the solid is carried out via the heat 
flux at the interface, namely q$ and also by using the 
matching condition 

ywi=‘yw-~~ atanyx*. (12) 
sf 

Thus, based on the sketch of Fig. 3, a distinction is 
made between the mean temperature of the wall q’, 
and the corresponding interface temperature YWi of 
it. This can be done by exploiting the existence of 
a linear temperature profile in the transversal direc- 
tion of the wall. By applying the limits r.* + 1 and 
& -+ a, the matching condition of equation (12) 

reduces to the one suggested by Faghri and Sparrow 

VI, namely 

Yti = 9, at any x*. 

Following the above-mentioned ideas, the tem- 
perature distribution of the external surface may be 
readily computed from the relation 

y _q +(r,Z+l) 1 
we- w -r-m (13) 

RESULTS AND DISCUSSION 

From an engineering point of view, it is not con- 
venient to present numerical results for this con- 
vective+onductive conjugate problem in terms of the 
conventional Nusselt numbers or the equivalent heat 
transfer coefficients. The reason for this statement is 
that, for this kind of conjugate problem, computation 
of the heat transfer coefficient involves three unknown 
quantities, namely : &i, $ti and (bb, all functions of x*, 
as stated in equation (5). Consequently, by specifying 
the variation of NU in the axial direction, there is no 
possible way to evaluate the heat transfer charac- 
teristics of the fluid flow for practical applications. 
Seemingly, this fact was not realized by Mori et aI. 
131, who presented their results in terms of NU and 9,i 
only; q$ and &,, remaining as unknown quantities not 
reported in the paper. In view of this limitation, their 
graphical results are of little applicability for cal- 
culation of engineering problems, other than to estab- 
lish that the NU ~st~butions are bounded by the 
corresponding distributions for uniform wall tem- 
perature and uniform wall heat flux involving ther- 
mally inactive walls, respectively. Conversely, in the 
present work, we proposed a totally different 
approach, wherein results will be presented in terms 
of realistic thermal parameters, namely: the dis- 
tributions of bulk temperature & and local tem- 
peratures dti and & accounting for two-dimensional 
wall conduction. All of these local variables are of 
paramount interest in engineering applications. 

A detailed inspection of the governing system of 
equations (l)-(3), reveals that the temperature dis- 
tributions of the fluid and the solid are dependent 
on four parameters, namely: Pe, K,, r,* and L*. In 
recognition of this excessive number of parameters, 
numerical solutions were obtained for two Peclet 
numbers (Pe = 500 and 1500) and two representative 
values of the radii ratio r$ encountered in practical 
problems, such as r,* = 1.02 and 1.2, with a range of 
conductivity ratio &for each combination of Pe and 
r,* ranging from K,, = 1 to a maximum of K,, = 104. 
All calculations correspond to a fixed heated length, 
L* = 0.04 used in ref. [3] too. Due to space 
limitations, a representative sample involving com- 
binations of this set of parameters only is presented 
in this section. 

At this juncture, it should be pointed out that the 
choice of the external radius r, instead of the internal 
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FIG. 4. Comparison for the distributiom of internal surface 
temperature and Nusselt number. 

radius ri as the characteristic length in the definition 
of the dimensionless temperature 4 appearing in equa- 
tion (3), ensures that the total amount of heat applied 
at the external surface of the tube wall is independent 
of the value of the radii ratio r:. Thus, in view of this, 
computed results are compatible in the whole range 
of cases analysed here, because the same amount of 
heat is supplied to the fluid stream always. It should 
be emphasized that this definition has been employed 
by Mori et al. [3] also, but it differs from the one used 
by Faghri and Sparrow [7], who neglected the wall 
curvature of the tube. 

Firstly, to assess the validity of the present numeri- 
cal methodology, a typical set of results in terms of 
the distributions of internal surface temperature and 
local Nusselt number are depicted in Figs. 4(a) and 
(b), respectively. These variables were chosen in 
ref. [3] to report their numerical results. The cor- 
responding family of curves is plotted for r: = 1.6, 
Pe = 500 and K,, = 100 and 5000. As observed in the 
figures, agreement was found to be excellent in the 
entire heating region of the tube. 

As mentioned in the preceding paragraphs, results 
will be presented for the axial distributions of three 
quantities : the mean bulk temperature &, the internal 
surface temperature & and the external surface tem- 
perature 4,. The general trends of these results will 
be discussed in the following paragraphs. 

0 0.02 094 
x* 

FIG. 5. Distributions of mean bulk temperature. 

Axial distribution of the mean bulk temperature 
between x* = 0 and 0.04 is presented in Fig. 5. The 
major issue to be examined in this figure is the 
response of &, to the variations of the controlling 
parameters r,*, K,, and Pe. Examination of the curves 
of Fig. 5 reveals that for the set of parameters chosen, 
the mean bulk temperatures at the exit of the heating 
region, i.e. x* = 0.04 are essentially identical. Mean- 
while, for a fixed value of r:, the effect of the con- 
ductivity ratio K,, is to increase slightly the bulk tem- 
perature at intermediate stations, and at the final 
stations too. This outcome is especially noteworthy 
since the mean bulk temperature is one of the most 
important quantities that needs to be computed as a 
result of heat addition at the external surface of the 
tube (finite length), with respect to the case of ther- 
mally inactive walls (infinite length). In addition to 
this, the influence of the Peclet number (Pe = 500, 
1500) for each group of curves is not relevant at all. 

An even more convincing demonstration of the for- 
giving nature of temperature to small values of KS, 
may be seen by examining Fig. 6, which was drawn 
for r,* = 1.02. Here, it is observed that for Ksr up to 
100, the distributions of internal surface temperature 
are almost identical and independent of Pe. However, 
for a moderate value of KS, = 1000, the corresponding 
curve shows a drastic distortion in the vicinity of both 
x* = 0 and 0.04, when compared to the ones already 
discussed. For Pe = 500, the temperature at .x* = 0 
is increased two-fold, whereas the temperature at 
x* = 0.04 has been reduced by a small percentage 
only. This trend is slightly modified for the case char- 
acterized by Pe = 1500. The last curve plotted in Fig. 
6 corresponds to the case of K,, = 10 000. Here again, 
the internal surface temperature tends to level off. 
Moreover, for a fixed Pe = 500, the temperature at 
x* = 0 increases by a factor of three, while its value 
at the exit x* = 0.04 experiences a reduction of 
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FIG. 6. Distributions of internal surface temperature. FIG. 7. Distributions of internal surface temperature. 

approximately 10%. The distortion of the corres- 
ponding curve for Pe = 1500 is not as pronounced. 

Attention is now turned to the same situation exam- 
ined in Fig. 5, but increasing the radii ratio r: to 1.2. 
Thus, Fig. 7 has been prepared for this purpose. The 
curves for K,, = 1 and 10 remain unaltered, while the 
d~s~bution changes ~adually at both ends of the 
heating region beginning now with 8&r = 100. The 
internal surface temperature at x* = 0 associated with 
& = 1000 increases significantly, while its value at 
n* = 0.04 drops slightly. This pattern is even more 
pronounced for K,, = I@, where the interfacial 
temperature becomes almost uniform for Pe = 500. 
This conclusion may be drawn from Fig. 5 too, if 
a curve for a higher value of IQ, say & = 105, is 
available. 

At this point, it is interesting to note in Figs. 6 and 
7 that, regardless of the numerical values of r,* and 
Pe, the internal surface temperature always reaches 
an asymptotic uniform value (average value) YW, as 
&r -+ 00 for a fixed heating length L* = 0.04. In the 
particular case of Fig. 7, YWi = 0.43 approximately, 
while Y’wi is slightly less in Fig. 6, both based on 
k;, = 100~. This preliminary analysis suggests that 
Y,, is independent of r$ and Pe and depends exclus- 
ively on L*. Therefore, under these extreme cir- 
cumstances, let us assume the existence of an inter- 
facial temperature YWW that is axially uniform. 
Accordingly, performing a global energy balance 

0.4 

0.2 6 4 

0 

dwi 

I; UD 

-0.6 .4 2 

46-04 0. 

0.4- 0.2 0 

between the entrance x* = 0 and the exit of the heat- 
ing region x* = L*, results in the simple expression 

Y 
4L* 

wm = [I -r&C*)]’ (14) 

In this equation r,, designates the dimensionless bulk 
temperature under the idealization of uniform wall 
temperature and inactive walls, i.e. the so-called classi- 
cal Graetz problem. In this sense, an accurate cal- 
culation of the corresponding bulk temperature dis- 
tribution has been performed by Shah [13] and is 
reported in ref. 111. 

In order to test the validity of equation (14), let us 
carry out a simple computation. Since in this study 
L* = 0.04, the value of ts at this axial station, taken 
from ref. [13] is ti, = 0.628. Inserting these two num- 
bers into equation (14) yields Yy,, = 0.43. This value 
coincides with the reading of (pWi for Ksf = 10000 in 
Fig. 7. Similarly, this trend is also manifested in Fig. 
6, although the isothermal limit is achieved at a higher 
value of K,,. 

A comparison between the internal and external 
temperature distributions for r.* = 1.2, Pe = 500 and 
&r > I is depicted in Fig. 8. For this particular com- 
bination, it is observed that the Yti and Y’,, curves 
for KS, = 1 are quite far apart, but whenever K,, 2 10 
deviations between these two temperatures are 
unnoticed. This negligible difference prevails atways 
for high values of KS, and small values of r,*. This 
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FIG. 8. Distributions of internal and external surface tem- 
peratures. 

peculiar behaviour suggests that, under the cir- 

cumstances delineated above, the one-dimensional 
approximation may be valid, and consequently 
simplifies the analysis of the conjugate problem 
drastically. 

Ultimately, Fig. 9 has been prepared to compare 
the results of the interfacial temperature distribution 
based on the one- and two-dimensional models pro- 
posed here, and additionally to assess the sensitivity 
of the one-dimensional results. In view of the large 

0.6- 

0.4 

$wi 

0.2 

- 2-dimensional - 

I -dimensional 

Pe =500 

0W4 
X* 

FIG. 9. Comparison between one- and two-dimensional for- 
mulations. 

number of parameters involved, a rather critical case 
having v,* = 1.2, Pe = 500 and the smallest possible 
value of KS,, KS, = I was selected for testing purposes. 
An overall inspection of the figure reveals that there is 
no substantial difference in the interfacial temperature 
yielded by the one- and two-dimensional models. It 
should be added that computations based on the two- 
dimensional model utilized ten radial nodes in the wall 
domain. 

As a final remark, a few comments on the efhciency 
of the computational procedure are in order. As 
already noted, the finite-difference grid for the 
forced convection domain consisted of 30 x 30 points 
(axial x radial). Meanwhile, the grid for the conduction 
problem in the solid was made of 30 x 10 points 
(axial x radial), the circumferential distribution of 
which matched that for the forced convection 
domain. The computation time was surprisingly 
small. A typical run took approximately 15 s ot 
CPU time to achieve convergence of up to four 
decimal figures on a DEC-10 digital computer. In 
passing, it should be added that the computational 
scheme developed in this paper shows high numerical 
stability ; e.g. solutions using a coarse grid consisting 
of four radial nodes in the fluid and only one node in 
the solid agree well with those utilizing more refined 
grids. 
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TRANSFERT THERMIQUE PAR UN ECOULEMENT LAMINAIRE DANS DES TUBES 
CIRCULAIRES, AVEC CONDUCTION PARIETALE BIDIMENSIONNELLE 

R&&-On examine l’influence dune longueur finie de chauffage sur les caracteristiques du transfert 
thermique par des ecoulements laminaires a travers des tubes circulaires a paroi ipaisse. Supposant des 
proprietes independantes de la temperature, ce problbme conjugue est gouverne par quatre groupes 
adimensionnels: la longueur de la region chauff&e, le nombre de Peclet, le rapport des conductivitts 
thermiques solide-fluide et le rapport des rayons sur la paroi solide. A partir des solutions numeriques 
obtenues par la methode du volume de controle, on trouve que la paroi bidimensionnelle provoque un 
domaine de chauffage dans le fluide qui contr6le les parametres tels que la temperature moyenne du fluide 
et les temperatures des surfaces inteme et exteme de la paroi solide. A partir dun ensemble de cas typiques 
analyses, on conclut que les deux temperatures de surface varient de faqon sensible dans la direction axiale 
tandis que les variations de la temperature moyenne sont moindres et plus graduelles. On explique en detail 
une solution radicale lirnite basee sur une approximation monodimensionnelle de l’bquation de conduction 

dans la paroi. 

DER WARMEUBERGANG BE1 LAMINARER STRGMUNG IN KREISFORMIGEN 
ROHREN MIT BERUCKSICHTIGUNG DER ZWEIDIMENSIONALEN WARMELEITUNG IN 

DER WAND 

Z--In diesem Bericht wird der EinSuIi einer endlichen beheizten L&rge auf den W&me- 
iibergang bei laminarer Striimung in dickwandigen kreisfijrmigen Rohren untersucht. Unter der 
Annahme von temperaturunabhangigen Stoffwerten wird dieses gekoppelte Problem von vier dimen- 
sionslosen GrBBen beeinSuBt: der Lange der beheizten Zone, der Peclet-Zahl, dem Verhiiltnis der Warme- 
leitfahigkeiten des Rohrs und des Fluids sowie des Radiusverhiiltnisses des Rohrs. Durch numerische 
Liisungen mit Hilfe der Kontrollvolumenn%herung wurde festgestellt, daB die tingswiirmeleitung in der 
Wand einen Einflul3 auf die Temperatur des Fluids und die Wanda&en- und -innentemperatur des Rohrs 
hat. Aus der Betrachtung von typischen Fallen wird geschlossen, daB die beiden Oberllbhentemperaturen 
eine wesentliche Anderung in axialer Richtung zeigen, wahrend bei der Verteilung der Fluidtemperatur 
eine geringere Veriinderung auftritt. Auf eine Grenzlosung, die auf einer bereichsweise eindimensionalen 

Naherung der Wlrmeleitungsgleichung fur die Wand beruht, wird ebenfalls eingegangen. 

TEIIJIOIIEPEHOC IIPH JIAMHHAPHOM TEYEHHH B KPYI-JIbIX TPYBAX C YYETOM 
JIBYXMEPHOn TEIIJIOI-IPOBO~HOCTM CTEHKPI 

AimoTPrmPPacchtarpriaaeaeTCR anmnme rrarpeaaer+foro yvacrrca Korremiofi mrsnibr ria xaparrrepricrmm 
rermoo6MeHa rrpri naMmrapHoM TePemm B spyrA~.~K rpy6ax c TOJICTO~~ CTeAItofi. B npenrronoremm 
He3aBHCElMOCTE CBOfiCTB OT TeMnepaTyphl AJm J@HHOfi cOlIp%nfeHHOfi 3a9a¶E B KaXCTBe OII~AeJIKlO- 

wit xprrrepaenpacchfarprinarorcff: awaaHarpeeaeMoroy9acma,wxoIIeecne,oTHouxewrreTennonpo- 

soA~ocreii TB~~AO~O Tena A KCEAKOCTE, a TaKxe OTHotuewie parrayca rpy6ar K Tome TB~~Ao~ 

CTCHICB. B ~3yJIbTaTellHCJleHHslxpaC¶eTOBCECllOJIb30BaHHeMMeTOAa KOHTpOJmHOrO o6aeMa yCTaHoB- 
AeHO, 'iT0 H3MeHIUI yCJIOBHK TeMOOTAapB OT CTeHKH B nOTOK XHAKOCTH, MO=0 y,lpaBA,,Tb TaEHMH 

~ax~bwi napaMerpaMn, xak cpemrehsacconaa TeMneparypa xmmomr, a rarcxe BHyTpeHHXK H 

BHeIIIHffII TeMl'Ie~Typbl nOBepKHOCTE TBepA0i-i CTeHKH. hiaJIE3 pm TEIIE¶iISK cnygaee noKa3bIBaeT, 
ST0 06e TeMneparypbr noeeplurocreii rpy6r.r Moryr cymezreemro n3hierf~rr B 0ce~0~ Aanpaenem B 

TO BFMS KaK QeAlieMaCCOBaS TeMlIepaTypa E3MeHReTCP MeHe 3IiaWITeJIbHO E 6onee IIsIaBHo. Tanxe 
AeTaJIbHO 06CyXCAaeTUl aCHMnTOTHWCKOe peIUeHHe, 6as~pyromeecn Ha OAHOMepHOii annpoKc$iMa~ 


